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Abstract
This research presents two parallel solutions to efficiently address spatial skyline queries. First, we propose a novel concept
called independent regions for parallelizing the process of spatial skyline evaluation. Spatial skyline candidates in an indepen-
dent region do not depend on any data point in other independent regions. Then, we propose a GPU-based solution. We use
multi-level independent region group-based parallel filter to support efficient multi-threading spatial skyline non-candidate
elimination. Beyond that, we propose comparable region to accelerate non-candidate elimination in each independent region.
Secondly, we propose a MapReduce-based solution. We generate the convex hull of query points in the first MapReduce
phase. In the second phase, we calculate independent regions based on the input data points and the convex hull of the query
points. With the independent regions, spatial skylines are evaluated in parallel in the third phase, in which data points are
partitioned by their associated independent regions in map functions, and spatial skyline candidates are calculated by reduce
functions. The results of the spatial skyline queries are the union of outputs from the reduce functions. Our experimental
results show that GPU multi-threading scheme is very efficient on small-scale input datasets. On the contrary, MapReduce
scheme performs very well on large-scale input datasets.

Keywords Spatial skyline query · MapReduce · Parallel computation · GPU

1 Introduction

Since the skyline operator was introduced into database
research [1], a number of efficient algorithms have been
proposed for the skyline evaluation. Bitmap [2], Index [2],
NN (Nearest Neighbor) [3] and BBS (Branch-and-Bound
Skyline) [4] rely on indices constructed before query pro-
cessing, while BNL (Block Nested Loop) [1], D&C (Divide
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and Conquer) [1], SFS (Sort Filter Skyline) [5] and OSPS
(Object-based space partitioning skyline) [6] use non-index
techniques. Moreover, several studies primarily focus on the
skyline query in a variety of problem settings (data residing
in a data stream [7] or on mobile devices [8]).

As a novel type of skyline query, spatial skyline query
(SSQ) was proposed to consider the preference of both
static and dynamic object attributes inmulti-criteria decision-
making applications [9].Unlike skyline queries that only take
static object attributes (e.g., rating and price of restaurants)
into account, the distance between objects is also calculated
as dynamic attributes in the spatial skyline queries. In par-
ticular, given a set of data points P and a set of query points
Q in a d-dimensional space, spatial skyline queries return a
subset of P , in which data points are not spatially dominated
by other data points in P . The spatial dominance is defined
by using the distance from data points to all query points.

Spatial skyline query is applicable to many applications.
Taking crisis management applications as an example, we
assume that a number of waterborne infectious disease cases
were confirmed at different locations; people who live at spa-
tial skyline places with respect to those locations should be
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alerted and examined first, because there might be a higher
possibility that these people may have been exposed to con-
taminated water. Another example is the travel planning
applications. People may prefer spatial skyline hotels with
respect to fixed locations of beaches and theaters for vaca-
tion. In this case, peoplewould prefer not to choose a hotel far
from all interesting attractions. One more example of spatial
skyline query is that peoplemay plan to have dinnerwith their
friends. They may consider the distance from their homes to
various restaurants for restaurant selection. The restaurants
far from all of their homes would not be included in the can-
didate list, because most people want to save time on the
road. Thus, having a list of spatial skyline restaurants is the
first step toward restaurant selection.

Two index-based algorithms were proposed to efficiently
address the spatial skyline queries [9]. Branch-and-Bound
Spatial Skyline B2S2 algorithm searches spatial skyline can-
didates by visiting an R-tree from top to bottom. Once a
spatial skyline is found, B2S2 expands the R-tree to access
the node which has minimum mindist value, and compares
it with all spatial skyline candidates found up to this point
in spatial dominance test. The other method, Voronoi-based
Spatial Skyline V S2 algorithm, relies on a Voronoi diagram
created over input data points. V S2 starts with the closest
data points to query points and then searches in the space by
visiting the neighbors of visited data points over the Voronoi
diagram. Due to high cost of the spatial dominance test, V S2

was improved by reducing the number of spatial dominance
tests in [10]. In the method, seed skyline points (a subset of
spatial skyline points) can be identified with spatial domi-
nance test.

However, the following problems motivate us to apply
parallel solutions to spatial skyline evaluation. First, the
distance between moving objects may keep changing. If
indices are created at a preprocessing stage, the cost of
indexmaintenancewould be unacceptably high. Secondly, as
data grow rapidly, addressing skyline queries on large-scale
datasets in a single-node environment becomes impracti-
cal. There are increasing numbers of approaches proposed
for processing skyline queries in distributed and/or paral-
lel environments [11]. Although distributed spatial skylines
were well studied, none of the parallel spatial skyline solu-
tions aiming to support large-scale input were reported so
far. Distributed spatial skyline (DSS) is able to support spa-
tial skyline in wireless sensor networks containing hundreds
of nodes, but large-scale input data cannot be handled in that
case. Thirdly, multiple parallel schemes have been applied to
general skyline computation. GPU has been utilized for sky-
line computation in [6,12–14]. MapReduce framework has
been incorporated into parallel solutions for skyline compu-
tation [15–17] and other database applications [18–20].

Therefore, we propose a scalable system consisting of two
parallel solutions based onGPUmulti-threading andMapRe-

duce schemes. To parallelize the spatial skyline computation,
we propose a novel concept, independent regions, in each
of which spatial skylines do not depend on any data point
outside the independent region. If data points do not fall in
any independent region, they can be discarded because they
must be spatially dominated by any data point in independent
regions. We also introduce independent region group (IRG)
concept, which is the union of the independent regions pro-
duced by the same data points.

In ourGPU-based solution, we propose amulti-level IRG-
based parallel filter, which will eliminate the majority of
non-candidate data points in parallel. For example, a data
point will be eliminated if it does not fall into any indepen-
dent region. Each independent region is processed in parallel.
After the filtering process, we adopt a comparable region
concept to further avoid dominance tests on non-comparable
data point pairs. Experiments show that GPU-based spatial
skyline evaluation is very efficient. However, a GPU-based
solution has to move data back and forth between CPU and
GPU memories. As a result, the size of input data is limited
by hardware capacity.

For a large dataset that cannot fit into a GPU or a CPU
memory, we propose a novel three-phase MapReduce-based
solution. In particular, given a set of data points and a set
of query points, we calculate the convex hull of the query
points in the first phase. Then, our solution produces the inde-
pendent regions at the second phase. With the independent
regions in the third phase,map functions associate data points
with their independent regions, and reduce functions find the
spatial skylines in independent regions in parallel. We also
propose a novel concept, pruning regions, in independent
regions. The pruning regions are the areas in which all data
points are dominated byother data points. If a data point is in a
pruning region, the data point can be discarded immediately.

In short, the contributions of this study are summarized
below:

1. We introduce a concept of independent regions in our
solution. The spatial skyline candidates in an indepen-
dent region do not depend on any data points in other
independent regions. With the feature of independence,
spatial skyline queries can be addressed in parallel.

2. We propose a GPU-based parallel solution to efficiently
evaluate spatial skyline queries on small-scale datasets.

3. We propose a MapReduce-based parallel solution to effi-
ciently evaluate spatial skyline queries on large-scale
datasets.

4. We evaluate the performance of the proposed solutions
through extensive experiments with different cardinality
of datasets.

The rest of this paper is organized as follows. In Sect. 2,
we define the spatial skyline queries and relevant techniques
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utilized in our solutions. In Sect. 3, the unique properties
we discovered are formally presented. In Sect. 4, we present
our advanced GPU-based solution. In Sect. 5, our advanced
MapReduce-based solution is presented. The experimental
validation of our design is presented in Sect. 6. Section 7
surveys related works. We conclude the paper in Sect. 8.

2 Preliminary

In this section, we present properties of spatial skyline
queries, which can be used for pruning the search space of
the query and parallelizing the query evaluation. Then, we
describe key characteristics of GPUs.

2.1 Problem statement

Given a dataset P in a d-dimensional space R
d , an object

p ∈ P can be represented as p = {x1, x2, ..., xd}where p.xi

is the value of the object on the i th dimension. D(., .) denotes
a distance metric that obeys the triangle inequality in R

d .
The spatial dominance relationship and the spatial skyline
operator are defined as follows [9]. All notations used in this
paper are summarized in Table 1.

Definition 1 (Spatial Dominance)Given a set of query points
Q, and two data points p and p′ in R

d , p spatially dom-

Table 1 Symbolic notations

Symbol Meaning

P , Q A set of data points and a set of query points

p, q A data point and a query point

pi Pivot point

p.xi The value of data point p in the i th dimension

R
d A d-dimensional space

h A hyper-place

S A half-space

F A facet of a convex hull

A�
q A set of adjacent convex points of q

p ≺Q p′ p spatially dominates p′ with respect to Q

SSK Y (P, Q) Spatial skylines of P with respect to Q

C H(Q) The convex hull of Q

DR(p, Q) The dominator region of p with respect to Q

P R(p, q) The pruning region generated by p and q

I R(p, q) The independent region generated by p and q

I R P Independent Regions Pivot, the independent
regions are generated by I R P

lssky A set of local spatial skyline candidates

chsky A set of spatial skyline candidates in a convex hull

Ll I RG An independent region group with depth l

inates p′ with respect to Q, denoted by p ≺Q p′, if
∀ q ∈ Q, D(p, q) ≤ D(p′, q) and ∃ q ′ ∈ Q, D(p, q ′) <

D(p′, q ′).

Definition 2 (Spatial Skyline) Spatial skylines of a set of data
points P with respect to a set of query points Q inR

d , denoted
by SSK Y (P , Q), are a set of data points in P , which are not
spatially dominated by any other data point in P with respect
to Q.

SSK Y (P, Q) = {p ∈ P | � p′ ∈ P, p 	= p′, p′ ≺Q p}
(1)

Property 1 If any data point p ∈ P is a spatial skyline point
with respect to a subset of query points Q′ ⊂ Q, then p is
also a spatial skyline point with respect to Q [9].

Property 2 The set of spatial skyline points of data points
P does not depend on any non-convex query points q ∈ Q,
q /∈ C H(Q), where C H(Q) indicates the convex hull of
Q [9]. In other words,

SSK Y (P, Q) = SSK Y (P, C H(Q)) (2)

Definition 3 (Dominator Region) Given a data point p ∈ P ,
a set of query points Q and hyper-spheres that center at
qi with radius D(p, qi ), qi ∈ Q, any data point inside
the intersection of the hyper-spheres spatially dominates
p with respect to Q. The intersection area that potentially
contains data points spatially dominating p with respect to
Q is referred to as the dominator region of p, denoted by
DR(p, Q).

Dominator region enables our solution to efficiently elim-
inate data points by reducing the search space of data points.
For example, Fig. 1 displays the dominator region of a data
point p and a set of query points Q. Q has three query
points q1, q2 and q3, which represent a convex hull in a 2-
dimensional space. Three circles centered at qi ∈ Q with
radius D(qi , p) are created in order to highlight the domi-
nance areas of p with respect to the query points. Any data
point p′ in the intersection of the three circles spatially dom-
inates p with respect to Q.

Fig. 1 An example of DR(p, {q1, q2, q3}) in a 2-dimensional space

123



76 W. Wang et al.

2.2 GPU computation overview

A graphics processing unit (GPU) is able to provide tremen-
dous opportunities for computational parallelism using thou-
sands of multi-threaded processing cores. The features of
GPU architecture are summarized as follows:

Computational model. Benefiting from a combination of
multi-threaded physical cores with rapid context switching,
a GPU is able to reach teraflops level computational through-
put. GPUs follow Single InstructionMultiple Thread (SIMT)
computing paradigm, and multiple threads are grouped
together, called a warp. Then, the threads in the warps are
mapped to Single Instruction Multiple Data (SIMD) execu-
tion unit—i.e., all threads within the same wrap execute the
same instruction, but with different data. At the last step, sim-
ilar to MapReduce scheme, GPU computation has a reduce
phase, which performs a summary operation over all the
results from every thread. In general, there are two types of
GPU standard reduction: serial reduction and parallel reduc-
tion.Most of theworks, including ours, use parallel reduction
to increase efficiency.

Within a warp, all threads are step-locked. Branch diver-
gence is a phenomenon that multiple threads within the same
warpgo to different branches due to branch instructions. Such
divergence serializes computation because some threads are
idle, while the processing core is executing for the other
branch.

Latency hiding. The combination of fast context- switching
and the large number of warps is able to hidememory access-
ing latencies, which is called latency hiding. Whenever the
execution of a warp is stalled, another warp can jump in and
get executed immediately tomaximize the overall computing
resources utilization.

Memory model. A GPU suffers from high latencies when
copying data between CPUs (host) and GPUs (device). The
GPU memory hierarchy consists of a global memory shared
among all resources, an L2 cache, and several lower-level
caches. Each streaming multiprocessor has 64KB config-
urable shared memory and L1 cache. The latency of shared
memory is approximately 100 times lower than the one of
global memory. However, it is a small-size memory that only
local to a thread block.

2.3 MapReduce overview

MapReduce was proposed as a generic programming model
for data-intensive applications in distributed environments
[21]. The framework provides two simple primitives, map
and reduce functions, and allows developers to focus mainly
on their functionality. The task scheduling, load balanc-
ing and other issues are encapsulated in the MapReduce

framework, which significantly reduces the difficulty of the
development of parallel applications. Driven by the MapRe-
duce framework, map functions receive data in key/value
pairs from input streams and output intermediate results
in another type of key/value pairs. Then, reduce functions
retrieve the intermediate results and write final results to an
output stream. In the shuffle phase, the intermediate results
are automatically grouped and sorted by the MapReduce
framework, The two primitives can be represented as: map
(K1, V1) → list(K2, V2) and reduce(K2, list(V2)) → list(K3,
V3).

2.4 Convex hull and spatial skyline queries

Given a set of query points Q in a d-dimensional space R
d ,

the convex hull of Q, denoted by C H(Q), is the smallest
convex polytope that contains all query points in Q. The-
oretically, a convex hull can be represented as either a set
of convex points or the intersection of a set of half-spaces.
Each half-space contains all the query points in Q.Moreover,
a convex hull can also be abstracted by a set of facets and
their adjacency relationships. Each facet can be defined by a
number of convex points. For example, a facet (line) can be
determined by two adjacent convex points in a 2-dimensional
space. The facets become planes that can be represented by
a convex point and its two adjacent convex points in a 3-
dimensional space. Because the facets of C H(Q) separate
the query points in Q from any point outside the convex hull,
connecting a data point v outsideC H(Q)with any data point
inC H(Q)must intersect with at least one facet of the convex
hull. Thus, the facet is referred to as a visible facet from v.

The properties of convex hull provide opportunities to
optimize the process of spatial skyline evaluation by reduc-
ing the search space of both data points and query points.
Given a set of data points P and the convex hull of a set
of query points Q, all data points inside C H(Q) are spatial
skylines of P with respect to Q [9]. Given two data points, if
they are in the convex hull, the bisector hyper-plane of these
two points partitions the space into two half-spaces, and there
must exist convex points in either half-space. Thus, neither of
the two data points can spatially dominate the other, and both
of them are spatial skylines. If one point p1 is in the convex
hull and the other p2 is not, then, the bisector line of p1 and
p2 partitions the space into two half-spaces, and there must
exist a convex point in the same half-space with p1. If the
convex point does not exist, the convex hull cannot contain
p1, which contradicts with our assumption. Thus, p1 is not
spatially dominated by p2. These two cases are summarized
in Property 3.

Property 3 Given a set of data points P and a set of query
points Q, if any point p ∈ P is inside the convex hull of
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Fig. 2 An example of independent regions in a 2-dimensional space

Q, then p is a spatial skyline of P with respect to Q (p ∈
SSK Y (P, Q)).

3 Independent region and independent
region group

In this section, we first provide a formal definition of an
independent region and an independent region group. Then
we explain how to select Independent Region Pivot.

Definition 4 (Independent Region) Given a data point p and
a set of query points Q in a d-dimensional space, we define
an Independent Region (IR) of p and qi , qi ∈ Q as a sphere
centered at qi with radius D(p, qi ). An independent region
group (IRG) of p with respect to Q is the union of the inde-
pendent regions, as shown in Fig. 2.

I RG(p, Q) =
⋃

qi ∈Q

I R(p, qi ), where

I R(p, qi ) = {l| D(l, qi ) ≤ D(p, qi )}
(3)

We define data point p as the Independent Region Pivot
of I RG(p, Q) as shown in Fig. 2.

With the definition of the independent region, we provide
the independence of spatial skylines as follows.

Theorem 1 Given a data point p and its independent regions
{I R(p, q j ) | q j ∈ C H(Q)}, where C H(Q) is the con-
vex hull of query points Q, ∀ q j ∈ C H(Q), any data
point p′ ∈ I R(p, q j ) is not dominated by any data point
p′′ /∈ I R(p, q j ).

Proof The proof is by contradiction. Assume that ∃ p′ ∈
I R(p, q j ), p′′ /∈ I R(p, q j ), p′′ ≺Q p′. By the defini-
tion of spatial skyline, p′′ is spatially closer to any query
point qi (qi ∈ Q) than p. Since q j ∈ C H(Q), so q j ∈ Q as
well. But according to the definition of independent regions,
D(p′′, q j ) ≥ D(p′, q j ) since p′′ is outside of I R(p, q j ),
which leads to a contradiction. Thus, this concludes the
proof. �
Independent region group. The concept of independent
region group is developed for parallelizing the spatial dom-
inance test. The dominance of objects in an independent

Fig. 3 L1 independent region filter.

region do not rely on any objects outside the independent
region. Given a set of data points P and a set of query points
Q in a d-dimensional space, an independent region group
can be generated by selecting a pivot p from P .

An independent region group specifies a smaller search
space, which contains all spatial skyline candidates. The
objects outside the independent region group can be elimi-
natedwithout spatial dominance test because all these objects
are dominated by the pivot point.

Based on Theorem 1, we find more properties regarding
independent region group.

Property 4 Given a set of data points P and a set of query
points Q, there does not exist a point p ∈ P, where
p ∈ SSK Y (P, Q) and p /∈ I RG(p, Q). In other words,
the objects in I RG(p, Q) are a superset of SSK Y (P, Q).

Moreover, the independent region group also partitions the
limited search space into independent regions; the dominance
test in independent regions canbeprocessed in parallel. There
is nodata exchange among independent regions in the process
of spatial query evaluation.

Property 5 Given a set of data points P and a set of query
points Q, let p be a pivot point, then

SSK Y (P, Q) =
⋃

I R∈I RG(p,Q)

SSK Y (PI R, Q) (4)

where PI R represents a set of data points in the independent
region I R.

4 Spatial skyline evaluation using GPU
multi-threading scheme

In this section, we will introduce spatial skyline using GPU
multi-threading scheme. In Sect. 4.1, we introduce a new
concept of multi-level independent region group, which can
be utilized as a filter step. An overview of the GPU solution
is introduced in Sect. 4.2.
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Fig. 4 L2IRG filters with varied pivots. a Using p8 as pivot while expanding L1IRG. b Using p10 as pivot while expanding L1IRG. c Using p9 as
pivot while expanding L1IRG

4.1 Multi-level independent region group (MIRG)

Asderived from independent region groups,multi-level inde-
pendent region groups can be defined recursively as follows.

Definition 5 (L1 independent region group) As shown in
Fig. 3, given a data point p and a set of query points Q, the
independent region group of p with respect to Q is defined
as an L1 independent region group, which is defined in Eq. 3.
In fact, L1 I RG(p, Q) is a basic building block of MIRGs.

Definition 6 (Ln independent region group) Given an Ln−1

independent region group, denoted by Ln−1IRG, for any
Ln−1 independent region in Ln−1IRG, if there exists a
data point p′ in the independent region, an Ln independent
region group can be generated by further overlapping every
independent region with I RG(p′, Q). There is a special
case. Suppose Ln−1 I R j ∈ Ln−1 I RG, and p′ /∈ Ln−1 I R j ,
it is possible that ∃I R(p′, q ′), Ln−1 I R j ∈ I R(p′, q ′)
(I R(p′, q ′)∈ I RG(p′, Q)). In this case, Ln−1 I R j cannot be
further partitioned. For Ln−1 I Rs like Ln−1 I R j , they will be
included into Ln I RG directly without further partitioning.

Ln I RG

=
{

Ln−1 I R j ∩ I R(p′, q ′) |Ln−1 I R j ∈ Ln−1 I RG,

I R(p′, q ′) ∈ I RG(p′, Q), �I R(p′, q ′),

Ln−1 I R j ∈ I R(p′, q ′)
}⋃

{
Ln−1 I R j |∃I R(p′, q ′), Ln−1 I R j ∈ I R(p′, q ′)

}

(5)

Figure 4 shows an example of L2 IRG generated from L1

IRG in Fig. 3.

It is worth noting the following key points. (1) Ln I RG is
defined by a recursion. During each recursion, query set Q
will be iterated, and onemore pivotwill be selected. (2)Given
an Ln−1 I RG, Ln I RG varies when a different pivot data

point p′ is selected because I RG (p′, G) overlapped with
Ln−1 I RG is different. (3) The selected pivot pointsmay vary
among Ln−1 independent regions. If a data point is in two
Ln−1 independent regions, the data point could be selected
as the pivot data point for both independent regions. (4) Once
a new pivot is selected, the overlapping independent regions
generated by the pivot point cannot be empty because the
pivot is in the independent region. (5) If an Ln−1 independent
region does not contain any data points, it will not be further
partitioned, and Ln I RG will not contain that independent
region as well.

We introduce the following properties of multi-level IRG:

Property 6 (Search space) Given a set of data points P and
a set of query points Q, any multi-level IRG generated from
P and Q specifies the search space of spatial skyline query
of P with respect to Q. Any object outside the IRG can be
discarded without the spatial dominance test.

Property 7 Given an LnIRG generated from an Ln−1IRG,
the search space of LnIRG is equal to or smaller than that
of Ln−1IRG.

Property 8 (Independence) Given a multi-level IRG that
consists of a set of independent regions. Any objects in an
independent region does not rely on any objects outside the
independent region.

Property 9 Given an Ln IRG generated from a set of data
points P and a set of query points Q, the MIRGs contain at
most (|Q| − 1) ∗ n + 1 independent regions.

4.2 Framework of the GPU-based solution

Spatial skyline queries are evaluated in three steps in our
proposed solution, displayed in Fig. 5, and the outline of
our algorithm is described in Algorithm 1. Specifically, our
solution receives a set of data points P and a set of query
points Q and outputs spatial skyline points of P with respect
to Q.
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Dataset P SSKY(P,Q)

Datasets Q

Pivot Selection

...

Pivot Selection

IRG-based Filter

...

IRG-based Filter

Multi-level IRGs

Dataset P

Spatial Dominance Test

...

Spatial Dominance Test

Spatial Skyline 
Candidates

Fig. 5 An overview of parallel spatial skyline processing using GPU

Algorithm 1 Spatial Skyline GPU Algorithm
Input: P , Q
Output: ssky
1: I RGs = CalculatingPivots&IR (P , Q);
2: P ′ = ParallelFilter(P , I RGs);
3: ssky = SpatialDominanceTest(P ′, Q);
4: return ssky;

By utilizing the properties of independent region groups,
we propose multi-level independent region groups to form
a space partition tree. Each level of tree nodes represents a
group of independent regions, the union of which covers the
whole search space.

As we described in Sect. 3, each IRG is generated by
an independent region pivot. A multi-level IRG is built on
multiple IRGs. For example, Lm IRG needs m independent
region pivots. We first generate all independent region pivots
and multi-level IRG in parallel. In the parallel filter step,
all data points are filtered in parallel based on independent
regions in multi-level IRGs. If data point p belongs to any
node at the bottom level, p will be passed to the Spatial
Dominance Test. Otherwise, p will be discarded.

In the last step of spatial dominance test, we use the com-
parable region-based dominance test to reduce the cost of
object comparison. All candidate points are compared in par-
allel. If one data point is not in the comparable region of any
other data point, it will be eliminated immediately.

4.3 Multi-level IRG-based parallel filter

Based on multi-level independent region group and its prop-
erties (Sect. 4.1), we develop a novel multi-level IRG-based
space partitioning scheme which partitions the search space
into independent sub-spaces.

IRG-based space partitioning has been proposed for
addressing spatial skyline queries in parallel. By utilizing the
property of convex hull, only the points on the convex hull of
query points are needed in query evaluation. This property
helps to significantly reduce the cost of spatial dominance
test; however, it also sets a limit to the parallelism of the
solution because spatial skyline queries can be performed up

to |C H(Q)| processes/threads in parallel, where |C H(Q)|
indicates the number of points on the convex hull of query
points Q. To fully utilize the computing power of GPUs, we
propose an MIRG-based space partitioning scheme; every
independent region can be further partitioned into smaller
independent regions by overlapping it with an additional
independent region group. Theoretically, the more the inde-
pendent region groups are overlapped, the more independent
regions can be used for query evaluation (see Property 9).

The correctness of multi-level IRG partitioning can be
proven from the following two perspectives. (1) Sufficiency.
Property 6 specifies the search space of spatial skyline
queries, which covers all spatial skyline candidates. If an
object is outside the search space, the object cannot be a spa-
tial skyline because it must be spatially dominated by one of
the pivot data points of Ln I RG. (2) Necessity. Property 8
describes a necessary object set for every candidate, which
contains all objects with which the candidate must be com-
pared.

Figure 6 displays an example of the partition tree, which
represents the space partitioning of the example in Fig. 4.
The root node at level 0 indicates the entire search space Rd .
Three nodes at level 1 partition the search space into three
sub-spaces by using I RG(p1, Q). The union of the three
sub-spaces is the search space after applying I RG(p1, Q);
the objects in one sub-space are independent from the ones
in other two sub-spaces. Moreover, for every sub-space, any
data point in the sub-space can be used to generate an IRG
and partition the sub-space into smaller sub-spaces. Consid-
ering I R(p1, q1) in Figs. 4a and 6 for example, p8 is selected
as a L2 pivot in I R(p1, q1), and I RG(p8, Q)= {I R(p8, q1),
I R(p8, q2), I R (p8, q3)} is produced and overlapped with
I R(p1, q1). I R(p1, q2) ∈ I R(p8, q2), I R (p1, q3) ∈ I R
(p8, q3), so those two I Rs will not be partitioned. Thus,
the node of I R(p1, q1) has three child nodes, which are I R
(p1, q1) ∩ I R (p8, q1), I R (p1, q1) ∩ I R (p8, q2) and I R
(p1, q1) ∩ I R (p8, q3).
Filter example. Figure 4 displays an example of L2 IRG-
based parallel filtering, and Algorithm 2 describes the filter
process in pseudocode. When Algorithm 2 visits the first
level of the partition tree (Fig. 6), the three nodes at level
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Level 0 Level 1 Level 3 Level 4Level 2

IR(p9,q2)∩IR(p1,q3)

IR(p10,q3) ∩IR(p1,q2)

IR(p10,q2)∩IR(p1,q2) 

IR(p10,q1)∩IR(p1,q2)

IR(p9,q1)∩IR(p1,q3)

IR(p9,q3) ∩IR(p1,q3)

IR(p8,q3)∩IR(p1,q1)

IR(p8,q1)∩IR(p1,q1)

IR(p8,q3)∩IR(p1,q1)

IR(p8,q1)∩IR(p1,q1)

IR(p8,q2)∩IR(p1,q1)

IR(p10,q3) ∩IR(p1,q2)

IR(p10,q2)∩IR(p1,q2) 

IR(p10,q1)∩IR(p1,q2)

IR(p1,q2)IR(p1,q2)

IR(p1,q3)IR(p1,q3) IR(p1,q3)

IR(p8,q3)∩IR(p1,q1)

IR(p8,q1)∩IR(p1,q1)

IR(p1,q1) IR(p8,q2)∩IR(p1,q1) IR(p8,q2)∩IR(p1,q1)

Rd

Fig. 6 An example of the partition tree

Algorithm 2 Parallel Filter
Input: P , I RGs
Output: P ′
1: Function: ParallelFilter (P , I RGs)
2: P.dagger = 0;
3: for ∀p ∈ P (in parallel) do
4: for ∀ ir ∈ Lm I RG (in parallel) do
5: if p ∈ ir and p ∈ Ln I RG then
6: p.dagger=1;
7: Use P.dagger to do Parallel Prefix Inclusive Scan & Repack;
8: return P ′;
9: EndFunction

one indicate the three sub-spaces partitioned by L1 I RG. All
objects outside the three sub-spaces are eliminated (e.g., p7).
In this example, we highlight three sub-spaces in I R(p1, q3)
in red in Fig. 4a. Figure 6 level 2 nodes correspond to
Fig. 4a L2IRG independent regions. We can also observe
that L4 I RG (|Q| + 1 = 4) introduces 9 (|Q|2) I Rs at the
bottom level. In summary, there are two ways to implement
the parallel filter:

I. Execute bottom level nodes in parallel, which means that
nine threads for each point will be generated in this spe-
cific example.

II. Pick a middle level m. Assign one thread for each node
at level m, then traverse the child nodes at a higher level
sequentially. If m = 1, we have three threads for each
point in our example.

However, if we use n threads for each point, we need n
bytes to store the threads’ results for reduction. Using too

many threads for each point would increase the reduction
cost as well as GPU memory usage. We adopt the solution
to parallelize the nodes in a middle level, and each thread
traverses child nodes in a higher level sequentially. After all
threads reach the bottom, we will execute a reduction and
delete all filtered points.

In Algorithm 2, P.dagger denotes whether data points P
are filtered. We use parallel prefix inclusive scan to calculate
the repacked index inP.index fromP.dagger, and shift spatial
skyline candidates based on P.index. Parallel prefix inclusive
scan is a standard GPU algorithm that computes a common
sequential prefix scan in a parallel manner. For example, if
we have a P.dagger that looks like [1, 0, 1, 1, 0] (1 indicates
skyline candidate), a prefix inclusive scan will generate [0,
1, 1, 2, 3] (denoted as P.index), which is a linear scan that
sums up all previous data. However, we cannot apply parallel
prefix inclusive scan to our algorithm directly. Each position
i in the P.index array keeps the count of items that were
not deleted before i . To take advantage of such an efficient
algorithm, elements in P.index will be assigned with −1 if
the corresponding element in P.dagger is 0. As a result, the
revisited P.index is [0,−1, 1, 2,−1], which are the indices
of skyline candidates (positive number).

4.4 Spatial-GPU Algorithm and implementation
details

As the key component of Spatial-GPU, Sect. 4.3 has cov-
ered the filter process. In this section, we first introduce our
pivot selection policy in Sect. 4.4.1. We then explain how to
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Algorithm 3 Calculating Pivots and Independent Regions
Input: P , Q
Output: irs
1: Function: CalculatingPivots&IR
2: τ = MAX_VALUE;
3: P I = ∅; � Li pivots set
4: for ∀ idx ∈ {1,...,|Q|} (in parallel) do
5: for ∀p ∈ P (in parallel reduction) do
6: if idx == |Q| then
7: if maxq∈Q D(p, q) < τ then
8: pi = p ; � L1 pivot
9: τ = maxq∈Q D(p, q) ;

10: else
11: q = Q[idx];
12: if D(p, q) < D(P I [idx],q) then
13: P I [idx] = p ;
14: Calculate all Li I RG based on P I ;
15: return L1 I RG,...,Ln I RG;
16: EndFunction

Fig. 7 Simplified example of pivot selection

execute the Spatial-GPU algorithm with comparable region
in Sect. 4.4.2. In Sect. 4.4.3, we introduce how to accelerate
the dominance test with GPUs.

4.4.1 Independent region pivot selection

Spatial-GPU utilizes the Ln independent region group-based
pre-filter method. The basic idea is constructing a global
independent region group first, called L1 I RG. In every inde-
pendent region that belongs to Li I RG(i = 1, ..., n − 1),
we pick an IRG pivot p′ and construct another independent
region group. The overlap of Li I RG and I RG(p′, Q) is
Li+1 I RG. Spatial skyline candidates must fall into at least
one I R (I R ∈ Li+1 I RG). The first step to implement this
method is choosing optimal pivots that maximize the number
of filtered data points as shown in Algorithm 3.

L1 pivot is a global pivot that balances all independent
regions. Spatial-GPU uses a parallel reduction to identify
L1 pivot , as the min of max distance value of each data
point ( L1 pivot={p |min p∈P maxq∈Q D(p, q)} ).

Ln pivots are local pivots that further partition and shrink
lower-level IRGs. The purpose of Ln IRG is to minimize the
search region and maximize the partitions for parallelism.

In Fig. 7 as an example, the search region of I R(p1, q1)
decreases to I R(p1, q1)

⋂
I RG(p8, Q) (the shadow area).

In Fig. 7, the point that minimizes the overlap region with
I R(p1, q1) should be a pivot for the next level.

4.4.2 Comparable region-based spatial dominance test

In the process of parallel spatial dominance test (see Defini-
tion 1), we use comparable region to reduce the number of
comparisons within the Euclidean distance metric. Note that
comparable region is a portable approach, and can be decou-
pled from our solution. In this subsection, we will provide
a formal definition of comparable region. For each point p,
we only need to compare it with p′ that belongs to the same
independent region. If p and p′ are not in the same indepen-
dent region, we can skip the expensive dominance test. With
the same concept, for each point p, we only need to compare
it with the p′ that belongs to the comparable region of p.

Definition Given a data point p and L1 pivot pi , and both p
and pi are in d-dimensional Euclidean space R

d . Assume τ

= maxq∈Q D(pi, q). The comparable region of p will be

{p′ | ∧d
i=1 D(p.xi − p′.xi ) ≤ 2τ }

For any spatial skyline candidate p, p must be in at least
one I R (I R ∈ L1 I RG). We assume p.I Rs={I R | p ∈ I R}.
The comparable region of p must cover p.I Rs.

For any data point p, we assume p ∈ I R(pi ,qi ). Based on
the definition of independent region, I R(pi ,qi )={l | D(l, qi )

≤ D(pi, qi )}. To reduce execution cost, the comparable
region can be approximated by an MBR (Minimum Bound-
ing Region), which is able to cover any I R. The sizes of
comparable regions depend on the pivot and data points.
Calculating the size of the comparable region for each point
would inevitably cause considerable extra cost. In order to
produce a global comparable region that is applicable on all
data points without extra cost, the side length of MBR could
be approximated to 2 ∗ maxq∈Q D (pi ,q).

The approximation may produce false positive. However,
actual dominance tests will be conducted on all of the sky-
line candidates, which will guarantee the correctness of the
final results. Because L1 pivot is able to balance all I Rs that
belong to L1 I RG (see Sect. 4.4.1), {D(pi, q) | ∀ q ∈ Q}
has a low variance and the number of false positives is not
large.

In the pivot selection phase, we already calculated τ =
min p∈P maxq∈Q D(p, q), and pi = {p|min p∈P maxq∈Q

D(p, q)}, whichmeans τ =maxq∈Q D(pi ,q). As a result, the
side length of comparable region MBR = 2τ . Before every
pair of dominance test between p and p′, we only need to
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Fig. 8 Comparable region-based BNL

Algorithm 4 Parallel Spatial Skyline Operation
Input: P ′, Q
Output: ssky
1: Function: SpatialDominanceTest (P ′, Q)
2: ssky = ∅;
3: P ′.dagger = ∅;
4: for ∀p′ ∈ P ′ (in parallel) do
5: for ∀p′′ ∈ P ′ (in parallel) do
6: if |p.x − p′.x | > 2τ ∨ |p.y − p′.y| > 2τ then
7: continue;
8: else if p′ is dominated by p′′ then
9: p′.dagger = 0;
10: Final repack;
11: return ssky
12: EndFunction

check the following equation:

∨d
i=1 D(p.xi − p′.xi ) > 2τ (6)

If Eq. 6 holds, p and p′ are incomparable.
Taking Fig. 8 as an example in R

2, {p′ | D(p11.x −
p′.x) ≤ 2τ ∧ D(p11.y − p′.y) ≤ 2τ} is the comparable
region of p11 (the shadow area). As we can see, for p11 only,
we avoid the dominance test between p11 and p2, p3 and p8.

As the outline of our algorithm described in Algorithm 1,
after the parallel filter, wewill execute parallel spatial skyline
operations on candidate data points. The details of our spatial
dominance operation are described in Algorithm 4, we use
P.dagger to denote dominated data points (1 by default).

4.4.3 Paralleled dominance test

Asa simple representation,weuse |Q| to represent |C H(Q)|.
|Q| is the dimension of spatial dominance test. Instead of
assigning the computation of each dominance test to one
thread (used in [22]), we break down the work of checking
all query points to |Q| parts.

Intuitively, each thread works for one subset of data-
points. However, there is a weakness for such solution. For
example, if there is a thread named A, ∃ j, j ∈ [1, |Q|] ∧

D(p1, Q[ j]) < D(p2, Q[ j]), thread A will terminate in
the middle of traversing from 1 to |Q|. However, if there
is another thread named B in the same warp, � j , j ∈
[1, |Q|] ∧ D(p1, Q[ j]) < D(p2, Q[ j]). Thread B will fin-
ish the traversing from 1 to |Q|, and terminate later than A.
Because of the SIMD parallel nature of GPU, the overall
computation will not benefit from early termination of A,
and B becomes the bottleneck. In order to improve GPU uti-
lization and avoid thread divergence, we use d threads for
d-dimensional dominance tests.

As we know, threads are executed in warps. Thread diver-
gence in a warp will not accelerate overall execution time.
Our method parallelizes this comparison process, and each
thread only compares one dimension. In this way, every
dimension shares the same execution time.

For example, for each point, we create an array of size |Q|
called f lag. We set f lagi to 1 (i = 1, ..., |Q|) by default.
If pi is dominated with respect to q j (q j ∈ Q), we assign

f lag j = 0. If ∨|Q|
j=1 f lag j = 1, pi is a spatial skyline candi-

date. In otherwords,we have to checkwhether f lag j = 1 for
every j ( j = 1, ..., |Q|). In order to parallelize this process
and eliminate thread divergence, each thread only checks one
query point q j , i.e., whether pi is dominated with respect to
q j . Each thread is only responsible to fill one f lag j . After
filling the entire f lag array, we synchronize all threads in
each thread block and execute a reduction. To reduce the time
of final reduction in the final step, we store the flag array in
shared memory. As we describe in the GPU overview, shared
memory enjoys fast memory access, which is suitable for
storing intermediate flag results. Paralleled dominance test
can be treated as a plug-in. The choice of adopting this plug-
in or not depends on the compatibility with the hardware
structure of the GPU.

4.5 Comparison with SkyAlign

In this section,we compare our approachwith state-of-the-art
GPU-based skyline algorithm SkyAlign [22] from two per-
spectives: filter process acceleration and thread divergence.
Wewill show that our multi-level IRG-based filter eliminates
more non-candidates with high efficiency. Spatial-GPU also
takes advantage of GPU multi-threading scheme with low
divergence.

4.5.1 Filter process acceleration

SkyAlign applies a threshold-based filter, which eliminates
data points that have any values smaller than the threshold
or all values equal to the threshold. The threshold τ is set
as the min of max values and the filtering process can be
performed in parallel. However, the filtering method cannot
be parallelized along dimensions. In [22], to filter each point
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p, one thread will check D(p, Q[ j]) > τ( j = 1, ..., |Q|)
sequentially, which is O(|Q|). This pre-filter method has a
major drawback when applying to spatial skyline. A spatial
skyline problem commonly has multiple query points, which
results in relatively high-dimensional input data after trans-
ferring to general skyline problem. Parallel mechanism in
this method is not applied along dimensions, which will not
fully utilize GPU cores.

However, in our filter process, we take advantage of the
spatial property of input data. Instead of transferring spatial
query points to distance attributes, we store the coordinates
of input data points. In the filter process, each thread is only
responsible for checking whether a data point p is in the
MBR of the independent region, which is O(1).

Compared with SkyAlign, the proposed multi-level IRG-
based filtering method is able to not only perform filtering
with less run-time, but also further eliminate a portion of data
points because of higher-level IRGs. Specifically, after pivots
are selected and the partition tree is generated, our method
visits a certain level of the partition tree in parallel and prunes
the data points by detecting whether they are in any node of
the tree. We also conduct optimization when the number of
query points |Q| becomes too large. For example, if |Q| =
10, level |Q|+1 of the partition tree will execute |Q|∗|Q| =
100 threads for each point, which causes the reduction cost
exceeding parallel benefit. In this case, we need to parallelize
the middle level of the partition tree instead of the bottom
level. In general, at levelm, we start |m| (|m| is the number of
nodes at level m) threads in parallel, each of which receives a
node (or a partition) at levelm of the tree. If a data point is not
in any of the nodes at levelm, the data point can be eliminated
because it is not in the Lm I RG (Property 6). After all the
unqualified data points are tagged, we proceed to scan the
remaining data points in parallel with respect to all the child
nodes at a higher level sequentially. In this way, we further
eliminate non-candidates without extra parallel resources.

4.5.2 Low divergence

SkyAlign uses point-based recursively partitioning methods
to induce a quad-tree partitioning for the dataset, and records
skyline pointswhen found in the tree. The recursively defined
point-based methods are not suitable for the branching sen-
sitive GPU architecture due to high divergence. Even though

Sky Align uses the global alignment to split the quad-tree,
the results ofmask tests diverge sporadically.Wewill test this
in Sect. 6.3.1. The global partitioning schememeans that it is
inevitable to sort all the points along every dimension. More-
over, finding a skyline point in the previous method requires
traversing the tree, which cannot take advantage of parallel
schemes.

OurSpatial-GPU uses an independent region-basedmulti-
level filtering method (Sect. 4.3). The key algorithmic idea
is taking the advantages of parallel multi-core mechanism
and reducing single-threaded sequential processes. Most
existing skyline algorithms suffer from sorting process. For
example, SkyAlign uses GPU radix sort on each dimen-
sion independently. If we have 10 query points in spatial
skyline and only one GPU, 10 times sequential sorts are
inevitable. That explains why our algorithm outperforms
SkyAlign.

In this section, we propose our advanced parallel spa-
tial skyline solution using GPU computing platform. First
of all, we propose a new concept of multi-level independent
region group, and briefly present the framework of the solu-
tion. After a multi-level independent-region-based pre-filter
is developed, our spatial skyline algorithm is illustrated in
detail in Sect. 4.4. Finally, we present the difference between
SkyAlign and our algorithm.

5 Spatial skyline evaluation using
map-reduce scheme

In this section, we propose our advanced parallel spatial sky-
line solution using MapReduce for scenarios of large-scale
datasets. First of all, we briefly present the framework of the
solution. Then, our spatial skyline algorithm is illustrated in
detail in Sect. 5.2. The concepts of independent regions and
pruning regions are introduced to optimize the process of
spatial skyline evaluation. Finally, we discuss three critical
implementation issues in our solution.

5.1 Framework overview

Our solution consists of three MapReduce phases, which
receive a set of data points P and a set of query points Q
as inputs, and output spatial skyline points of P with respect

First Map-Reduce Phase Third Map-Reduce Phase

Dataset Q

Map

Global 
Convex Hull

ReduceMapReduce

CH(Q)

Dataset P
SSKY(P, Q)

IR(CH(Q))

...

Local 
Convex Hull

Local 
Convex Hull

Partitioning by 
Independent Regions

...

Partitioning by
 Independent Regions

...

Spatial 
Skyline

Spatial 
Skyline

Dataset P

Locally Optimized 
Independent Region

Locally Optimized 
Independent Region

... Globally Optimized 
Independent Regions

Second Map-Reduce Phase

Map Reduce

Fig. 9 An overview of the parallel spatial skyline processing using MapReduce
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to Q. As illustrated in Fig. 9, we calculate the convex hull of
Q in the firstMapReduce phase. Q is initially partitioned into
subsets of equal size, and each map function finds the local
convex hull of query points in a subset. Then, a reduce func-
tion generates the global convex hull of Q by merging the
local convex hulls. Convex hull algorithms like Graham scan
could be employed in each map and reduce function [23].
Due to high complexity of convex hull computation, a fil-
tering method can be used to filter out unqualified points
with lower cost. For example, Eldawy et al. observed that the
convex points must be at least one of four types of skyline
points of Q (max-max, min-max, max-min and min-min) in
a 2-dimensional space, and applied skyline algorithms as a
filtering step in their CG_Hadoop system [24].

An intuitive spatial skyline method requires examination
of the spatial dominance between every pair of data points.
Sharifzadeh and Shahabi utilized the R-tree and Voronoi dia-
gram as indices in their B2S2 and V S2 algorithms [9]. Son
et al. enhanced V S2 by reducing the number of dominance
tests [10]. However, extending these methods to a parallel
solution is non-trivial. Designing an algorithm that efficiently
maintains indices over data in a distributed and/or parallel
environment requires expertise and extensive experience. To
address this issue, we take advantage of independent regions,
in each of which spatial skyline points do not depend on any
data points outside the independent region. With the inde-
pendence, the input data points can be partitioned by their
independent regions, and spatial skyline points can be calcu-
lated in parallel. Therefore, after the completion of convex
hull computation,we calculate the independent regions based
on the convex hull and the input data points P in the second
phase. Each map function takes a subset of P and the convex
hull of Q as inputs and outputs a locally optimal independent
region pivot (see Fig. 2). Then a reduce function produces
a globally optimal independent region pivot by merging the
intermediate results.More details of independent regionpivot
selection will be discussed in Sect. 5.5.1.

In the third phase, P is initially partitioned, and each map
function finds the independent regions of data points in a
split. The output of the map functions can be represented
as < I R.id, p >, where I R.id denotes the unique identi-
fier of the independent region associated with a data point
p. There are three possible cases: (1) data points are elim-
inated if they are outside all independent regions, (2) data
points are marked and output as spatial skylines by map-
pers and reducers if they are inside the convex hull of Q.
These data points are needed in reduce functions, because
theymay spatially dominate data points in category 3, and (3)
data points are produced with their associated independent
regions if they fall in at least one independent region. These
data points will be processed by reducers to find spatial sky-
lines in the independent regions. If a data point is inside two
or more independent regions, the map function will produce

a pair of < I R.id, p > for every associated independent
region. After the shuffle phase, data points in P are grouped
by independent regions and sent to reduce functions for spa-
tial skyline calculation in parallel. Finally, the global spatial
skyline points are the union of the output of reduce functions.
A data point could be associated with two or more indepen-
dent regions, which may introduce duplicates in the results.
We design an eliminationmethod to remove duplicates in our
solution. The method will be presented in Sect. 5.5.3.

Figure 2 shows an example of spatial skyline query over
three query points and eight data points (Q={q1, q2, q3, q4},
P={p1, ..., p8}). First of all, the convex hull of query points
(C H(Q)) is generated in the first MapReduce phase. Then,
the globally optimal independent region pivot is found by
using P and C H(Q) in the second MapReduce phase. Each
mapper takes a split of P andC H(Q) (a constant global vari-
able) and selects a local optimal independent region pivot,
and a reducer outputs the globally optimal pivot. In the third
MapReduce phase, each mapper receives a split of P , and
the pivot and C H(Q) (as two constant global variables),
and produces object points with their associated independent
regions. In the example, there are three independent regions
({I R(p1, q1), I R(p1, q2), I R(p1, q3)}). All the indepen-
dent regions can be calculated from the pivot and C H(Q)

in mappers. Moreover, object points are associated with the
independent regions where they locate in. If we use ir1, ir2
and ir3 to denote I R(p1, q1), I R(p1, q2) and I R(p1, q3),
then p1 is associated with ir1, p5 is associated with ir2 and
etc. After the shuffle phase, < ir1, p1 >, < ir1, p2 >,
< ir1, p3 > and < ir1, p8 > are grouped and sent to the
first reducer, < ir2, p1 >, < ir2, p5 >, and < ir2, p6 > are
passed to the second reducer, and < ir3, p1 > < ir3, p4 >

< ir3, p5 > are processed in the third reducer. In this case,
p1 is a special object point, which is in all three indepen-
dent regions. As we will discuss our elimination method
in Sect. 5.5.3, p1 will only be output by the first reducer.
Thus, the first reducer outputs p1, p2 and p8 as spatial sky-
lines and discards p3 because it is dominated by p8. The
second reducer produces p5 and p6. The third reducer does
not output any object because p4 is eliminated in the spa-
tial dominance test and p5 has been produced in the second
reducer. Finally, the result of the spatial skyline query is
the union of the results of reducers, which is {p1, p2, p5,
p6, p8}.

5.2 Spatial skyline calculation

In the second and thirdMapReduce phases,we generate inde-
pendent regions based on the convex hull of Q and a set of
data points P for spatial skyline computation in parallel. Due
to high cost of the spatial dominance test that requires com-
paring the distance from data points to all convex points, we
introduce pruning regions in independent regions. A prun-
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Fig. 10 An example of merged independent regions in R
2

Fig. 11 An example of pruning regions in R
2

ing region can be defined by a data point inside C H(Q), a
convex point and its adjacent convex points. If a data point
is in a pruning region, the point can be discarded without the
dominance test.

The independent regions are determined by the indepen-
dent region pivot and the convex hull of Q. The convex hull
is uniquely determined by input query points Q; however,
theoretically, the pivot can be arbitrarily selected. Since the
independent regions specify the search region that contains
spatial skyline candidates, an intuitive strategy of the data
point selection is to select the data point that minimizes the
total volume of its independent regions (Fig. 10).

Figure 2 displays an example that utilizes independent
regions in spatial skyline evaluation in R

2. The datasets P
and Q consist of 8 data points and 4 query points, respec-
tively. The convex points of the convex hull of Q are q1,
q2 and q3. The three dashed circles indicate three indepen-
dent regions generated by p1 and the convex points. In this
example, P is partitioned into three subsets, which are P1 =
{p1, p2, p3, p8}, P2 = {p1, p4, p5} and P3 = {p1, p5, p6}.
Because p1 and p8 are in the convex hull, they are spatial
skylines [9]. p7 is outside all independent regions and can be
discarded by mappers in the third phase. p5 is in I R(p1, q2)
and I R(p1, q3), thus p5 is associated with both independent
regions. Then, the spatial skylines in independent regions
are calculated independently. Figure 11 shows an example
of the pruning region in I R(p1, q1) (the formal definition of
pruning regions will be presented in Sect. 5.3). p8 is a data
point that is closer to q1 than p1. Thus, we create a prun-
ing region P R(p8, q1) (highlighted in gray) in I R(p1, q1)
to filter out data points dominated by p8. In the example,
p3 falls in P R(p8, q1) and can be discarded without being

compared with p2. Thus, p2 is the only data point requiring
spatial dominance test, comparing its distance to all convex
points with the one of p8. Our spatial skyline algorithm will
be presented in Sect. 5.4.

5.3 Pruning regions in independent regions

In the third MapReduce phase, a reduce function calculates
spatial skylines of a set of data points in an independent
region. In particular, the data points are comparing their dis-
tances to all convex points of C H(Q) with all other data
points (spatial skylines do not depend on non-convex points
[9]), and the ones are discarded if they are spatially dominated
in the same independent region. The data point comparison
would be expensive when the number of convex points of
C H(Q) becomes large. Thus, to minimize the cost of the
dominance test, we propose a pruning method that is able to
efficiently filter out unqualified data points without accessing
all convex points of C H(Q). This method defines a pruning
region in each independent region. If data points fall in the
pruning region, they can be discarded because there must
exist a data point dominating these data points. We will first
illustrate the pruning regions in a 2-dimensional space and
then provide a formal definition and proof of the pruning
regions in high-dimensional spaces.

Figures 12 and 13 show an example of a pruning region
in R

2. Given a query point q, two data points p and v, let
Lqx be a line connecting q to any point x ∈ R

2, and Lvq

be the line of q and v. We build a 2-dimensional Cartesian
coordinate system, in which q is the origin and Lqx is x axis.
Lqx and Lvq partition R

2 into two half-spaces, denoted by
S−

qx and S+
qx , and S−

vq and S+
vq , respectively.

Theorem 2 If p and v satisfy

(1) v ∈ S+
qx and p ∈ S−

qx

(2) v.x ≤ p.x

(3) D(v, q) > D(p, q)

(7)

then p spatially dominates v with respect to any point q∗, q∗
∈ S−

qx
⋂

S+
vq .

Fig. 12 A pruning region using p and a visible facet Lqx
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Fig. 13 An example of P R(p, qi )

Proof As a case of p.x ≥ 0 shown in Fig. 12, the three
conditions indicate that (1) Lqx partitions v and p into two
half-spaces, v.y > 0 and p.y < 0; (2) if we create a line L pc

perpendicular to Lqx , then v is at the left side of L pc; (3) v is
outside of the circle centered at q with radius D(p, q). The
circle intersects with L pc at p and b.

Given any data point q∗ or q∗∗ in S−
qx

⋂
S+
vq (highlighted

in gray), Lvq∗ must intersect with either an arc from a to b
(arcab) or a line from b to c (Lbc). If Lvq∗ intersects with
arcab at e, then we can get D(p, q) = D(e, q) and p.x >

e.x . Given a query point qx = {q∗.x , 0} on Lqx , then

D(e, qx ) =
√

(e.x − q∗.x)2 + (e.y)2

=
√

D(e, q)2 − 2 · (e.x) · (q∗.x) + (q∗.x)2

>

√
D(p, q)2 − 2 · (p.x) · (q∗.x) + (q∗.x)2

=
√

(p.x − q∗.x)2 + (p.y)2

= D(p, qx ) (8)

thus, D(p, qx ) < D(v, qx ). If qx is moved to q∗ (q∗.y < 0),
then D(p, q∗) < D(v, q∗) is also held. On the other hand, if
Lvq∗∗ intersects with Lbc at e′, then D(p, q∗∗) < D(e′, q∗∗),
because Lqx is the bisector line of p and b, and both p andq∗∗
are in S−

qx . Thus, D(p, q∗∗) < D(e′, q∗∗) ≤ D(v, q∗∗). We
can get the similar result in the case of p.x < 0. Therefore,
p spatially dominates v with respect to any query point in
S−

qx
⋂

S+
vq . �

In a two-dimensional space, a convex hull is a convex
polygon, inwhich each convex point has two adjacent convex
points. Figure 13 shows three convex pointsqi−1,qi , andqi+1

of a convex hull C H(Q). qi−1 and qi+1 are adjacent to qi .
Line segments Lqi qi−1 and Lqi qi+1 are two visible facets from
a data point v outside C H(Q) [25].

Theorem 3 In a two-dimensional space, given a query point
qi ∈ C H(Q) and a data point v outside C H(Q), let A�

qi be a
set of adjacent convex points of qi , and p be an invisible data
point from v. Each of the lines from p perpendicular to Lqi q j

(q j ∈ A�
qi ) partitions the space into two closed half-spaces.

Let S−
qi q j

⊥ be the half-space containing qi . Then, any data

point v outside C H(Q) satisfying

(1) v ∈ S−
qi q j

⊥ , q j ∈ A�
qi

(2) D(v, qi ) > D(p, qi )
(9)

is spatially dominated by p with respect to Q.

Proof In Fig. 13, Lab and Lcd are two lines from p per-
pendicular to Lqi qi−1 and Lqi qi+1 , respectively. Lab, Lcd and
arcbc separate v from the convex hull C H(Q). Lvqi parti-
tions C H(Q) into two closed half regions, G− and G+; all
convex points are in either G− or G+. If a convex point q∗
is in G−, we can easily get D(p, q∗) < D(v, q∗) by using
Theorem 2. The similar result can be obtained in the case that
any convex point q∗∗ is in G+. Thus, v is spatially dominated
by p with respect to Q. �

After an illustration of pruning regions in R
2, we extend

the concept of pruning regions to high-dimensional spaces.
In a d-dimensional space, a convex hull of query points
Q can be represented by a set of half-spaces H, where
C H(Q) = ⋂

h+∈H h+. The bisector hyper-plane of each
half-space contains a (d-1)-dimensional facet of the convex
hull, which can be determined by a convex point and a sub-
set of its adjacent convex points. The formal definition of the
pruning regions is provided as follows.

Definition 7 (Pruning Regions) In a d-dimensional space,
given a convex hull of query points C H(Q), a data point
v outside C H(Q), a visible convex point q and an invisi-
ble data point p from v, let A�

q be a set of adjacent convex
points of q in facets, h⊥

qq j
be the (d-1)-dimensional hyper-

plane that contains p and is perpendicular to Lqq j , q j ∈ A�
q .

h⊥
qq j

partitions the space into two closed half-spaces. The

one containing q is denoted by S−
h⊥

qq j
. Then any data point v

outside C H(Q) satisfying

(1) v ∈ S−
h⊥

qq j
, q j ∈ A�

q

(2) D(v, q) > D(p, q)

(10)

is spatially dominated by p with respect to Q. The region
containing all possible v is called a pruning region of p and
q, denoted by P R(p, q).

Proof The proof is by induction. The pruning region in a
2-dimensional space is proven in Theorem 3. We assume
that the pruning region is held in an (i-1)-dimensional space
(i ≥ 3), then, in an i-dimensional space, since v is outside
C H(Q), the line connecting v with any convex point q∗ must
intersect with a visible closed (i-1)-dimensional facet F of
C H(Q). The hyper-sphere centered at q with radius D(p, q)

and h⊥
qq j

(q j ∈ A�
q ) separate v from C H(Q). If a ray from
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v to q∗ intersects with the hyper-sphere at e earlier than any
h⊥

qq j
(q j ∈ A�

q ), then given any convex point qk ∈ A�
q , we

can build an i-dimensional Cartesian coordinate system, in
which F is a hyper-plane (xi = 0), v.xi > 0, p.xi < 0 and
Lqqk (Lqqk ∈ F) is x axis. Any query point on Lqqk can be
represented by {x1, 0, ..., 0}. Since D(e, q) = D(p, q) and
e.x1 < p.x1, given any query point qx on Lqqk , we can get

D(e, qx ) =
√

(e.x1 − qx .x1)2 + D(e, Lqqk )
2

=
√

D(e, q)2 − 2 · (e.x1) · (qx .x1) + (qx .x1)2

>

√
D(p, q)2 − 2 · (p.x1) · (qx .x1) + (qx .x1)2

=
√

(p.x1 − qx .x1)2 + D(p, Lqqk )
2

= D(p, qx ) (11)

where D(e, Lqqk ) denotes the distance from e to the line
Lqqk . Thus, we can get that, given any query point q ′ satis-
fying D(p, q ′) ≤ D(e, q ′), if q ′ is moved to q ′′ on any of the
directions from q to its adjacent convex points in F , D(p, q ′′)
< D(e, q ′′) is also held. Therefore, p is closer to any query
point in F than e. Since, v.xi > 0, p.xi < 0 and q∗.xi < 0, so
D(p, q∗) < D(v, q∗). On the other hand, if a ray from v to q∗
first intersects with h⊥

qqk
at e′, let q� be the center of the inter-

section of h⊥
qqk

and the hyper-sphere centered at q with radius
D(p, q), h⊥

qqk
is an (i-1)-dimensional hyper-plane, in which

D(e′, q�) > D(p, q�), and e′ ∈ S−
hqqt

, qt 	= qk , qt , qk ∈ A�
q ,

which satisfies the conditions in an (i-1)-dimensional space.
Thus, D(p, q�) < D(e′, q�); then D(p, q∗) < D(e′, q∗) ≤
D(v, q∗). Therefore, this concludes the proof. �

Figure 14 shows an example of the convex hull of query
points Q in a 3-dimensional space. v is a data point outside

Fig. 14 Anexample of visible facets of a convex hull in a 3-dimensional
space

Fig. 15 An example of a visible facet after a coordinate transformation

the convex hull. The line Lvwe intersects with a visible facet
F at e. F can be determined by three convex points qi−1, qi

andqi+1.After a coordinate transformation, F is transformed
to be on plane Z (z = 0), v.z > 0 and p.z < 0, as displayed
in Fig. 15. Lqi qi+1 is the x axis in plane Z . The area invisible
from v, including p, is highlighted in gray. Two hyper-planes
h⊥

qi qi−1
and h⊥

qi qi+1
perpendicular to Lqi qi−1 and Lqi qi+1 are

highlighted in red. qi+1 and qi−1 are two elements of A�
qi .

If a ray from v to q∗ first intersects with the sphere centered
at qi with radius D(p, qi ) at e, then according to Eq. 11,
we can get that given any point q ′ on Lqi qi+1 , q ′.x ≥ qi .x ,
D(p, q ′) ≤ D(e, q ′), and moving the point on the direction
from qi to qi+1 with distance �d (�d > 0) makes the point
closer to p than e. The similar result can be obtained on the
direction from qi to qi−1. Thus, any query point in the facet
F is closer to p than e. Moreover, e.z > 0, q.z < 0 and
q∗.z < 0, we can get that D(p, q∗) < D(e, q∗) < D(v, q∗).
On the other hand, if a ray from v to q∗∗ first intersects
with h⊥

qi qi+1
at e′, then e′.x = p.x , and D(e′, qi ) > D(p, qi ).

Let q ′
i be the intersection of Lqi qi+1 and h⊥

qi qi+1
, D(e′, q ′

i )

> D(p, q ′
i ). h⊥

qi qi−1
intersects with h⊥

qi qi+1
at a line, which

contains p and partitions h⊥
qi qi+1

into two closed half-spaces.
q ′

i and e′ are in the same half-space. By Theorem 3, D(e′, q ′
i )

> D(p, q ′
i ). Therefore, D(v, q∗∗) ≥ D(e, q∗∗) > D(p, q∗∗),

and v is spatially dominated by p with respect to Q.

5.4 Spatial skyline algorithm

With the concept of pruning regions, we present our spa-
tial skyline algorithm used in reduce functions of the third
phase. The input data points are grouped by their indepen-
dent regions through the shuffle phase, and unqualified data
points outside independent regions have been discarded in
map functions. The fundamental idea of our method is to
first eliminate data points by using pruning regions. If they
are not in any pruning region, they are needed to compare
with all other potential spatial skyline candidates for spatial
dominance test.

The details of our method are described in Algorithm 5.
The algorithm receives all data points in an independent
region I R(p, qi ), denoted by Pi , and the convex hull of query
points Q. We use chsky and lssky to keep local spatial sky-
lines inside and outside C H(Q), respectively. P R abstracts
pruning regions of the spatial skyline candidates. The union
of chsky and lssky are output as spatial skylines in the inde-
pendent region,which is a subset of the global spatial skylines
of the query.

In particular, the algorithm first finds all the data points
in C H(Q). These data points are kept in chsky, and used to
build pruning regions P R (from lines 4 to 9). lssky tem-
porarily maintains all data points outside C H(Q). Then,
each data point in lssky is visited for the dominance test
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Algorithm 5 Spatial Skyline Algorithm
Input: Pi , C H(Q)

Output: lssky ∪ chsky
1: lssky = ∅;
2: chsky = ∅;
3: P R = ∅;
4: for ∀p ∈ Pi do
5: if p is inside C H(Q) then
6: chsky = chsky ∪ {p};
7: P R = P R ∪ P R(p, qi );
8: else
9: lssky = lssky ∪ {p};
10: for ∀p ∈ lssky do
11: if p is in P R then
12: lssky = lssky - {p};
13: Continue;
14: if ∃ p′ ∈ (chsky ∪ lssky), p′ 	= p, p′ ≺Q p then
15: lssky = lssky - {p};

return lssky ∪ chsky;

Fig. 16 An example of Grid(lssky ∪ chsky)

Fig. 17 An example of Grid(DR(lssky ∪ chsky))

(lines 10 to 15). If a data point falls in any pruning region,
the data point will be removed from lssky. If the data point
is outside the pruning regions, it needs to compare with all
other data points in chsky and lssky and will be eliminated
if it is dominated.

To minimize the cost of the dominance test in line 14, we
use two multi-level grids, Grid (lssky ∪ chsky) and Grid
(DR(lssky ∪chsky)), to maintain spatial skyline candidates
and their dominator regions (defined in Sect. 2.1). The two
grids are always synchronized; once there is a data point
inserted into or removed from Grid (lssky ∪ chsky), Grid
(DR(lssky ∪ chsky)) is updated accordingly. Figures 16
and 17 display an example of the two grids. The cells at the
bottom level keep the references of spatial skyline candidates
and their dominator regions. Parent cells maintain the prox-
imity information of their child cells. In the dominance test

of a new data point p, we first check if p is dominated by
other data points. We calculate the dominator region of p
and visit Grid (lssky ∪ chsky) from top to bottom to see
if there is a data point falling in the dominator region. The
iteration can stop at any intermediate level when either of
the two conditions is satisfied: (1) all cells intersecting with
the dominator region do not contain any data point (p is not
dominated by spatial skyline candidates in lssky ∪ chsky);
(2) a cell inside the dominator region contains a data point (p
is dominated by the data point). If p is not dominated, then
we visit Grid (DR(lssky ∪ chsky)) in a similar manner to
see if p dominates any data point in lssky ∪ chsky. If p
falls in the dominator region of p′, then p′ and its dominator
region will be removed from both Grid (lssky ∪chsky) and
Grid (DR(lssky ∪ chsky)).

5.5 Implementation issues

In this subsection, we discuss three implementation issues in
our solutions.

5.5.1 Independent region pivot selection

In the second MapReduce phase, the search space is par-
titioned into a number of independent regions. The spatial
skylines are calculated in parallel by reducers in the third
MapReduce phase. The execution time of a parallel program
is determined by the slowest process, and the spatial skyline
algorithm takes longer on larger inputs. Thus, distributing
the data points to reducers in a balanced manner is critical to
our approach.

If the data points are uniformly distributed in the search
space, the number of data points in an independent region is
proportional to the volume of the independent region, which
depends on the distancebetween the independent regionpivot
and the convex point. Theoretically, the point with equal dis-
tance to all convex points is the optimal independent region
pivot, which could split data points in equal size. However,
the optimal pivotmaynot exist in irregular convexhull.More-
over, the point thatminimizes the total volumeof independent
regions would be an alternative optimal pivot. Nevertheless,
the cost of finding the point is expensive.

Thus, we turn to an approximation method in our imple-
mentation. After the convex hull is calculated, we choose the
center of the Minimum Bounding Rectangle (MBR) of the
convex hull as the independent region pivot.

5.5.2 Independent region merging

In the third phase of our solution, a reducer processes data
points in an independent region. The number of reducers
needed in the spatial skyline calculation depends on the num-
ber of independent regions or the number of convex points
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in the convex hull of query points Q. Since the size of the
convex hull would be large, the task maintenance and com-
munication overhead in MapReduce framework would be
unacceptably high.

Thus, there are two merging strategies that can be applied
to our proposed solution if the number of independent regions
is much greater than the number of available computing
resources. In the strategies, we assume that objects are uni-
formly distributed in the search space. The smaller the total
volume of independent regions is, the less the number of
objects are processed in spatial skyline computation.

Shortest distance merging In this method, we merge the
closest pair of two neighboring independent regions. The
distance of two independent regions is evaluated by the dis-
tance between the centers of the independent regions. We
assume that there is a higher possibility that two independent
regions overlapwith each other if they are close.Merging two
overlapped independent regions may reduce the cost of spa-
tial skyline computation for the following two reasons: (1)
the objects in the overlapping region are fed to one reducer
instead of two, which minimizes the total number of objects
in the spatial dominance test; (2) the pruning regions of the
independent regions are also merged; more objects could
be eliminated without the dominance test. Take Fig. 10 for
example, q1 and q2 are the closest pair of convex points in
the figure. I R(p1, q1) and I R(p1, q2) are merged, and the
new independent region is denoted by I R(p1, {q1, q2}). So,
p3 and p8 are only processed by the reducer, which receives
I R(p1, {q1, q2}). The pruning region of I R(p1, {q1, q2}) is
PR(p1, q1) ∪ PR(p1, q2).

In our implementation, we iterate the convex hull in
counter clockwise order, and calculate the distance between
every pair of two consecutive independent regions. Let n be
the number of computing resources available to the spatial
skyline evaluation and m be the number of convex points, we
will merge the top m − n (m ≥ n) closest pairs of the inde-
pendent regions (the number of pairs of independent regions
is equal to the number of convex points).

Threshold-based merging An alternative strategy merges
independent regions by considering the volume of the over-
lapping region of two independent regions. In this method,
we visit the independent regions in counter clockwise order.
Given two consecutive independent regions, we calculate the
ratio of volume of the overlapping region of the two indepen-
dent regions to the volume of the smaller independent region.
If the ratio is higher than a specific threshold, the two inde-
pendent regions will be merged. Another difference from the
first method is that two or more independent regions may
be merged if they are close to each other. The ratio can be

Fig. 18 Volume of overlapping region of two independent regions

Fig. 19 An example of independent regions in a 2-dimensional space

defined as follows.

ratio(q1, q2) = Vold(I R(p1, q1)) ∩ Vold(I R(p1, q2))

Vold(I R(p1, q2))
(12)

where I R(p1, q1) and I R(p1, q2) are two consecutive inde-
pendent regions, Vold(I R(p1, q2)) denotes the volume of
I R(p1, q2) in a d-dimensional space and Vold(I R(p1, q1))
≥ Vold(I R(p1, q2)).

Moreover, the volume of the overlapping region of two
independent regions (two spheres) can be calculated as fol-
lows (see Figs. 18, 19).

Vold(I R(p1, q1) ∩ I R(p1, q2))

=
∫ r1

u0
Vold−1(h)du +

∫ r2

t0
Vold−1(h)dt

(13)

where Vold−1(h) denotes the volume of the sphere with
radius h in a (d-1)-dimensional space, h = (r21 − u2)1/2 =
(r22 − t2)1/2. u0 and t0 are the lower bounds of the inte-

grals, where u0 =
r21−r22+D(q1,q2)2

2D(q1,q2)
and t0 =

r22−r21+D(q1,q2)2

2D(q1,q2)
.

D(q1, q2) denotes the distance between q1 and q2.
Figure 18 shows an example of the independent region

merging in a 2-dimensional space. Line l pp′ decomposes the
overlapping region into two sub-regions. The length of l pp′
is denoted by V 1(h) = 2h. If we move l pp′ toward q1 and
q2, respectively, then, the volume of the two sub-regions is
the sum of integral of V d−1(h) in the overlapping area. In
a d-dimensional space, l pp′ becomes a sphere in a (d-1)-
dimensional hyper-plane, and h is the radius of the sphere.
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In a 2-dimensional space, ratio(q1, q2) can be calculated
as follows,

ratio(q1, q2)

= Vol2(I R(p, q1)) ∩ Vol2(I R(p, q2))

Vol2(I R(p, q1))

=
∫ r1

u0
(h)du + ∫ r2

t0
(h)dt

Vol2(I R(p, q1))

≈
r21 cos

−1
(

d2+r21−r22
2dr1

)
+ r22 cos

−1
(

d2+r22−r21
2dr2

)

πr12
(14)

5.5.3 Duplicate elimination

The third issue is that our solution may produce duplicates
since a data point may locate in two or more independent
regions. If the data point is a spatial skyline, it will be written
to the results of the query by multiple reducers. To elimi-
nate the duplicates, we associate a unique independent region
identifier to each data point, which indicates that the data
point will be output as a spatial skyline by the reducer which
processes data points in the independent region. Reducers
processing data points in other independent regions will not
output the data point even if it is a spatial skyline. Take
Fig. 11 as an example, p5 is a data point in I R(p1, q2) and
I R(p1, q3). If the identifier of I R(p1, q2) is associated with
p5, and p5 is a spatial skyline, p5 is output only by the reducer
processing data points in I R(p1, q2).

6 Experimental validation

As we mentioned in Sect. 2.2, data have to be copied into
GPU memory to be managed in GPU. GPU memory size is
relatively limited compared to CPU memory. The input data
will not fit in GPU memory if the data size is too large. Due
to the limitation of GPUmemory, we only conduct the exper-
iments on up to 10 million data points. In real world, input
dataset could achieve 10 million or even 500 million. The
GPU solution is no longer suitable for large input datasets.
We propose a MapReduce-based parallel solution for large
input datasets.We test the solution on 100 to 500million data
points.

Datasets.To test on small datasets,weuse real-world datasets
downloaded fromGeonames1 and set 10 million data size by
default. To test on large datasets, we use large size synthetic
datasets that are randomly generated under uniform distribu-
tion in a 2-dimensional space and set 100 million data size
by default. Similar to [9], the query points are randomly gen-

1 http://www.geonames.org/.

erated in random regions where maximum MBR(Q) is 1%
of the entire dataset. We use 10 query points by default.

Algorithms.Weintroduce the algorithms forMapReduce and
GPU settings.

MapReduce setting. Our proposed algorithm is denoted
by P SSK Y -G-I R-P R, which combines the concepts of
independent region, pruning region and multi-level grid data
structure for efficient query evaluation.

We developed two single-phase MapReduce-based solu-
tions as baselines, P SSK Y and P SSK Y -G. P SSK Y
applies a randomdata partitioningmethod to split data points.

Each mapper uses BNL to produce local spatial sky-
lines by comparing every pair of data points, and a reducer
merges the local results and outputs the global spatial sky-
lines. P SSK Y -G works similarly to P SSK Y except that
P SSK Y -G utilizes multi-level grid data structure for effi-
cient spatial dominance tests. Since all three solutions use
the same algorithm in convex hull computation,wewill focus
primarily on the investigation of the overall performance of
solutions and the effect of independent regions and pruning
regions on spatial skyline computation in the second and third
MapReduce phases. All solutions were implemented in Java
on Hadoop 2.6, which is an open source implementation of
the MapReduce framework [26].

GPU setting. We downloaded the simulation codes of
BSkyTree [14] and multi-core Hybrid [27], which are state-
of-the-art parallel skyline algorithms. We convert spatial
skyline queries into general skyline queries by adding an
additional phase at the beginning of the two methods to cal-
culate distance between every pair of data point and query
point by using the GPU in parallel. After the distance calcu-
lation, the two methods can work as baseline algorithms in
our experiments.

We also reproduced SkyAlign [22] as a GPU-based
baseline algorithm in Java and JCuda 7.0, denoted by Spatial-
GPU. Because our Spatial-GPU is implemented in Java, we
use the same setting to guarantee fair comparison. In terms
of run-time evaluating for Sky Align, we omit repacking and
sorting consumption and only takeGPU-related computation
into consideration. In this way, we make sure our reproduc-
tion of repacking or sorting will not affect the execution time
evaluation.

The code of our implementation is publicly available2.

Configuration. We introduce the configuration for MapRe-
duce and GPU settings.

MapReduce setting.The experimentswere conducted on a
12-node shared-nothing cluster. Each node is equipped with
19 Intel Xeon 2.2 GHz processors and 128 GBytes of mem-
ory. All nodes were connected by GigaBit Ethernet network.

2 https://github.com/VV123/SpatialSkyline-GPU.
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(a) (b)

Fig. 20 Run-time performance varying dataset cardinality. a Small-
scale data. b Large-scale data

All results were recorded after the system model reached a
steady state.

GPU setting. The GPU algorithms use an Nvidia Tesla
K80 graphics card. K80 has 12 GB GDDR5 memory per
GPU, which is the maximum memory size on the market
at the time of this writing. The graphics card is equipped
with Intel(R) Xeon(R) E5-2670 v3 2.30 GHz CPU proces-
sor and 256 GBytes of CPU memory. We assume all data
have been loaded into CPU memory; the time of loading the
data to CPU memory is excluded from our evaluation. The
GPU implementations are compiled using nvcc 7.5 compiler.
Hybrid runs with 8 threads following [22].

6.1 Scalability with cardinality

First of all, we evaluate the effect of data cardinality on all
solutions.

We apply small-scale real-world dataset on GPU algo-
rithms, and large-scale synthetic dataset on MapReduce
setting. Query points are set to 10 by default.

As shown in Fig. 20, we vary the cardinality from 2 to 10
million, and 100 to 500 million, respectively. All algorithms
consume more time as cardinality grows, and our algorithms
perform well constantly. The execution time and number of
dominance tests are not correlated for GPU setting (shown
in Figs. 20, 22), but are correlated for MapReduce setting.
In Fig. 21, we measure the pure spatial skyline time, which
refers to GPU kernel time in GPU setting, and reducer phase
at the final computation phase in MapReduce algorithms.

6.1.1 GPU algorithms scalability with cardinality

First of all, we evaluate the effect of data cardinality on
small-scale real-world dataset. As Fig. 20a shows, the exe-
cution time of all solutions increases when dataset grows.
However, the growth rate of Spatial-GPU is significantly
lower than BSkyTree, Hybrid and SkyAlign. Spatial-GPU
executes more than 40% faster than CPU algorithms. Spatial
skyline is high-dimensional because the number of query
points is relatively large ([22] tests up to 16 dimensions).
SkyAlign consists of d sequential iterations (d = the number

(a) (b)

Fig. 21 Spatial skyline execution time varying dataset cardinality. a
Small-scale data. b Large-scale data

(a) (b)

Fig. 22 Number of dominance test varying dataset cardinality. a Small-
scale data. b Large-scale data

of dimensions), which is not able to fully take advantage of
GPU parallel features.

Our real-world dataset is more likely to be a non-uniform
dataset, and our result is consistent with results shown in
[22] that CPU algorithms work well for correlated dataset.
As we observed in [22], Hybrid outperforms BSkyTree for
anti-correlated and independent datasets and in contrast for
correlated dataset. As shown in Fig. 20a, the results are con-
sistent with the claim in [22] that SkyAlign does not perform
better than CPU algorithms on low cardinality correlated
datasets.

SkyAlign uses recursively partitioned algorithms and does
not require more dominance tests when the number of points
increases because the resultingquad-tree becomesdeeper [9].
However, SkyAlign still suffers from sequential iterations,
which couldnot beoptimizedbyGPUparallel scheme.More-
over, SkyAlign repacks data points and MT and QT arrays
for every iteration.

For low-dimensional data or easier workloads, GPU algo-
rithms are ineffective because the computational task is not
challenging enough to amortize the cost of retrieving the data
to the GPUmemory. The result is also mentioned in [22] that
CPU algorithms are efficient enough for low-dimensional
data.

We also test the number of dominance tests in Fig. 22a.
Even though all GPU algorithms suffer from more domi-
nance tests than CPU algorithms, the execution time is still
better. The reason is that GPU executes dominance tests in
parallel. Compared within CPU algorithms, the number of
dominance tests and run-time are correlated. For GPU algo-
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rithms, run-time does not fully depend on the total number
of dominance tests.

In terms of GPU algorithms, our theory is that SkyAlign
suffers from sequential iterations among dimensions, and
Spatial-GPU filters in parallel , which makes the most of the
GPU paradigm. In summary, GPU algorithms are suitable
for high-dimensional relatively large cardinality datasets.

6.1.2 MapReduce algorithms scalability with cardinality

As Fig. 20b displays, the execution time of all solutions
increaseswhen the datasets grow,which is consistentwith the
number of dominance tests as shown in Fig. 22b. The growth
rate of P SSK Y -G-I R-P R is lower than that of P SSK Y
and P SSK Y -G. In addition, on average, P SSK Y -G-I R-
P R executes around 90% faster than P SSK Y and 32% faster
than P SSK Y -G, respectively. The reason is that P SSK Y -
G-I R-P R is able to parallelize the spatial skyline evaluation
by applying the concept of independent region and effi-
ciently filter out unqualified data points in pruning regions.
Moreover, a performance improvement was observed when
comparing P SSK Y -G with P SSK Y because themulti-level
grid data structure is employed to efficiently access the prox-
imity information of data points for the dominance test.

In summary, no matter for GPU-based algorithms or
MapReduce-based algorithms, all methods exhibit the basic
trend of increasing run-time with respect to the increases
in cardinality, and our methods achieve high efficiency with
different dataset cardinalities.

(a) (b)

Fig. 23 Run-time varying number of query points. a Small-scale
dataset. b Large-scale dataset

(a) (b)

Fig. 24 Spatial skyline execution time varying number of query points.
a Small-scale dataset. b Large-scale dataset

6.2 Effect of query points

We investigate the effect of query points on different data
scales. We fix the size of data points at 10 and 100 million,
respectively. The number of convex hull query points are 10,
12, 14 and 16. In this section, query point means convex hull
query point. Figure 23 displays the overall execution time
for small-scale and large-scale datasets, which justifies our
theory that our system maintains high efficiency in different
settings. Figure 24 displays the pure spatial skyline execution
time which is kernel time in GPU setting and reduce phase in
Hadoop setting. Figure 25 presents the number of dominance
tests. Figures 23 and 24 show that pure spatial skyline time
and overall execution time share the same trend,whichmeans
spatial skyline operations are the major workload. However,
the number of dominance tests is not fully related to execution
time for GPU setting, which is consistent with our theory
that increasing parallelization is able to improve efficiency
dramatically.

6.2.1 Effect of query points for GPU algorithms

We fix the size of data points at 10 million for GPU set-
ting. Figure 23a displays the overall execution time of four
solutions. With the increasing number of query points, the
execution time of all four algorithms increases. GPU algo-
rithms do not exhibit much benefit for fewer query points.
Because we adopt the IRG-based parallel filter, more query
points will not increase the filter time.When a spatial skyline
query hasmore query points, the dominance test for each pair
of data points requires more comparisons, which will make
better use of GPU parallel scheme.

For CPU algorithms, no matter how the number of query
points changes, our Spatial-GPU always exhibits faster exe-
cution time.

Figure 24a shows the kernel time corresponding to
Fig. 23a. Both figures share the same trend, but the GPU
algorithm suffers from higher overhead due to data transfer
and takes more execution time proportionally.

6.2.2 Effect of query points for MapReduce algorithms

We fix the size of data points at 100 million. The number
of query points selected are 10, 12, 14 and 16. Figure 23b
displays the overall execution time. The experimental results
show that the entire process of query evaluation takes longer
with increasing number of query points. The reason is that
there are more data points in the search region, and the num-
ber of data points requiring dominance test becomes larger.
In Fig. 2 for example, a convex hull is represented by q1,
q2 and q3. p1 is used to generate three independent regions.
If more query points form a new convex hull while existing
independent regions stay the same, we can conclude that new
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(a) (b)

Fig. 25 Number of dominance test varying number of query points. a
Small-scale dataset. b Large-scale dataset

query points will form more independent regions. The over-
all area covered by all the independent regions will increase
accordingly. Thus, more data will be located in the inde-
pendent regions and be processed by reducers in the third
MapReduce phase.

Figure 24b shows the execution time of spatial skyline
computation, and the number of dominance tests grows
rapidly when the number of query points grows larger. Simi-
lar results are observed in terms of the number of dominance
tests in Fig. 25b.

6.3 GPUmulti-threading scheme experimental
validation

In this section, we evaluate the unique features of GPUmulti-
threading scheme design. First, we investigate the thread
divergence of SkyAlign. Then, we investigate the effect of
the number of leaf nodes for Spatial-GPU. We also inves-
tigate the effect of pre-filter levels in Spatial-GPU. Finally,
we test the effect of GPU hardware.

6.3.1 Latency hiding

As we introduced in Sect. 2.2, the efficiency of GPUs heav-
ily depends on latency hiding. During every GPU cycle, the
warp scheduler selects an idle warp from the warp pool for
execution. If there is any instruction ready in the selected
buffer of warp instructions without pipeline hazard, such
warp instruction is ready for execution; unless it is stalled
for the following factors: cache miss, data hazard, control

Fig. 26 SkyAlign dominance tests per iteration

hazard, structural hazard, or delays caused from the warp
scheduling policy.

The latency-hiding ability of GPUs has been well investi-
gated in [28]. They draw the conclusion that the fast context
switching andmassivemulti-threaded architecture can effec-
tively hide most latency by swapped in and out warps. Their
conclusion is consistent with our experiments. Figure 26
shows the number of dominance tests in SkyAlign in each
iteration. In this example, 10 query points are used, which
means after transferring to general skyline, there will be 10
dimensions and 10 iterations in Sky Align as well.

In Fig. 26, the gray line shows the maximum number
of dominance tests in a thread, and the black line shows
the average number of dominance tests in a thread. The
x-axis represents the number of iterations. All the points
are arranged in log scale. We can observe a large variance
among each iteration and intense fluctuation along iterations.
In other words, the workload of each thread is uncertain and
there is a high chance that threads in a warp diverge dramat-
ically.

On the contrary, Spatial-GPU makes the most of the
GPU parallel mechanism and provides fast context switch
and massive threads. We use multi-level independent region-
based pre-filter method to filter out the majority of data in
parallel. Since dominance tests are unavoidable for the rest
of the data, we simply apply one dominance test per thread or
one point per thread. SkyAlign computes 102 to 103 of domi-
nance test each thread.When using Parallel Dominance Test,
Spatial-GPU deploys 108 threads and computes one domi-
nance test each thread.

In summary, there are two reasons contributing to the
overall execution time difference between SkyAlign and
Spatial-GPU. First, branch divergence, small size of threads
and heavy workload per thread limit the performance of
latency hiding. Second, the advanced multi-level pre-filter
method dramatically decreases the number of spatial skyline
candidates in parallel anddecreases the number of dominance
tests in quadratic.

(a) (b)

Fig. 27 Varying number of leaf nodes of L|Q|+1IRG. a Run-time per-
formance. b Kernel time

123



94 W. Wang et al.

(a) (b)

Fig. 28 Using levels for multi-level IRGs. a Execution time. b Domi-
nance tests

6.3.2 Effect of leaf nodes in MIRGs

As shown in Fig. 27, we test the run-time performance and
kernel time for all GPU-based algorithms varying number of
leaf nodes in MIRGs. We use level |Q| + 1 for query size
{10, 12, 14, 16}, and leaf nodes are approximately {100, 150,
200, 250}.

From the experimental results, we can observe that
Spatial-GPU minimizes the execution time due to multi-
level IRG-based parallelization. With increasing number of
leaf nodes, the run-time for Spatial-GPU is relatively stable.
All methods exhibit the same basic trend of increasing run-
ning times with respect to increases in the number of leaf
nodes.

In theory, Spatial-GPU filters in parallel and the overall
execution time should not increase with varying numbers of
leaf nodes. However, the run-time increases with more leaf
nodes from the experimental results. In practice, the compu-
tational task within each independent region can be executed
in parallel, but there is a reduction phase thatmerges interme-
diate results from all regions together. Moreover, data points
for each independent region cannot fit into the shared mem-
ory and have to be stored in GPU memory. In this way, all
the independent regions read from GPUmemory at the same
time, and they are not fully “parallelized” in practice.

6.3.3 Multi-level pre-filter comparison

We also test how pre-filter levels affect the performance of
Spatial-GPU in Fig. 28. Figure 28a, b shares exactly the same
trend. As we expected, the L1 pre-filter method suffers from
longer execution time and more dominance tests on average
comparedwith the L |Q|+1 pre-filtermethod.This observation
justifies that the L |Q|+1 pre-filter method not only amortizes
the overhead for implementing it, but also reduces a large
portion of spatial skyline comparisons.

6.3.4 Performance of difference GPUs

We test our Spatial-GPU algorithm on different GPUs
GeForce GTX480 Each GPU has 1.5GB GDDR5 memory,
480 CUDA cores and memory bandwidth 177.4 GB/sec.

Fig. 29 The overall execution time of varying GPU hardware

Arithmetic rate is 1.35 Tflops for single precision and 168
Gflops for double precision.
NVIDIA Tesla K20 Each GPU has 5GB GDDR5 memory,
2496CUDAcores andmemory bandwidth up to 208GB /sec.
Arithmetic rate is 3.52 Tflops for single precision and 1.17
Tflops for double precision.
NVIDIA Tesla K80 Each GPU has 12GB GDDR5 memory,
2496 CUDA cores and memory bandwidth of 480GB/sec.
Arithmetic rate is 8.74 Tflops for single precision and 2.91
Tflops for double precision.

The performance of GTX480, K20, K80 are in ascending
order, same as the GPU memory space. For GTX480, the
GDDR5 memory is only 1.5GB, so we test the dataset of {2,
4, 6, 8, 10} * 105.

As shown in Fig. 29, the hardware performance will affect
the execution time dramatically.

6.4 HadoopMapReduce scheme experimental
validation

In this section, we evaluate the unique features of Hadoop
MapReduce scheme design. First of all, we investigate the
effect of independent regions and pruning regions.

6.4.1 Effect of independent regions and pruning regions on
spatial skyline algorithms

To evaluate the effectiveness of independent regions and
pruning regions, we compare the execution time of spatial
skyline computation in P SSK Y -G-I R-P R (the execution
time of reducers in the third MapReduce phase) with the
ones in P SSK Y and P SSK Y -G. The cardinality of datasets
varies from 100 to 500million points. As Fig. 21b shows, the
execution time of all solutions increases when the datasets
grow. The execution time of P SSK Y increases rapidly due to
high complexity of spatial skyline computation. The growth
rate of P SSK Y -G-I R-P R is the lowest because all data
points can be processed in parallel and a significant por-
tion of data points can be discarded without dominance test.
Moreover, the reducer that merges spatial skylines becomes
a bottleneck in P SSK Y and P SSK Y -G, which consumes
50% to 90% of the total execution time.
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Fig. 30 The overall execution time of the three solutions by varying
node cardinality

6.4.2 Effect of number of nodes

We evaluate the speedup of proposed solutions by scaling
up the size of MapReduce cluster. The datasets are fixed at
100 million objects. The cardinality of cluster nodes varies
from 2 to 12.

In Fig. 30, the execution time of all solutions drops as
the size of the cluster increases. As expected, P SSK Y
always consumes more execution time than P SSK Y -G and
P SSK Y -G-I R-P R while scaling up the cluster. On average,
P SSK Y -G-I R-P R enjoys the highest dropping rate. The
dropping rate of P SSK Y is constantly lower than 20%. The
reason is that more map or reduce tasks can be executed in
parallel with more computing resources. However, although
all three methods take advantage of mapper parallelism, only
reducers of P SSK Y -G-I R-P R run in parallel because the
global region is partitioned into independent regions. The
skyline results in each independent region do not depend on
the ones in other independent regions.

7 Related work

In this section, we review previous work related to spatial
skyline queries, parallel solutions for general skyline queries
and GPU solutions for general skyline queries.

7.1 Spatial skyline queries

As a special case of dynamic skyline queries, Spatial Sky-
line Queries (SSQ) can be addressed by Block Nested Loop
(BNL) [1] and Branch-and-Bound Skyline algorithms (BBS)
[4]. In a dynamic skyline query, each object is mapped to
another search space by using pre-defined functions. All the
objects that are not dominated by other objects in the search
space after the mapping are returned from the dynamic sky-
line queries. BNL algorithm can address the dynamic skyline
queries because it compares every pair of objects in the input
dataset, and eliminates the ones that are dominated by any
other objects. BNL does not need indices and is efficient over

small datasets; however, it suffers from I/O access when the
input datasets become large. If the size of skyline candidates
exceeds the size of availablememory space, all the candidates
have to be written to a temporary data stream and read back
when they are needed in the next iteration of object compar-
ison. BBS relies on an R-tree to evaluate the general skyline
queries; it calculates the mindist of intermediate entries in
the R-tree and searches the space by expanding the entrywith
the smallest mindist . Nevertheless, BBS does not consider
the relation between the input query points and data points.

Motivated by the inefficiency of BNL and BBS, a Branch-
and-Bound Spatial Skyline (B2S2) algorithm and a Voronoi-
based Spatial Skyline (V S2) algorithm were proposed for
spatial skyline evaluation [9]. In addition to considering the
properties of the convex hull generated by input query points,
B2S2 searches the space by visiting an R-tree from top to
bottom. Once the first spatial skyline is found, B2S2 expands
the R-tree with the node which has the minimum mindist
value and checks the dominance between the visited node
and all spatial skyline candidates found so far. The process
continues until all intermediate nodes potentially containing
spatial skylines have been visited. On the other hand, V S2

builds a Voronoi diagram over input data points. The input
data points are organized by their Hilbert values in pages in
order to preserve their locality. After completion of convex
hull calculation, V S2 starts with the closest data points to the
query points and searches the space by visiting the neighbors
of visited data points over the Voronoi diagram. For every
visited data point, V S2 compares it with all spatial skylines
found so far for spatial dominance test. The process continues
until all Voronoi cells (or data points) that potentially contain
spatial skylines have been visited. Inspired by high cost of
the spatial dominance test, V S2 was improved by reducing
the number of spatial dominance tests [10]. In addition to
applying sorting techniques, the method is able to identify
seed skyline points (a subset of spatial skyline points)without
dominance test. Given a set of query points Q and a set of
data points P , let V (pi ) be the Voronoi cell of data point
pi ∈ P , the seed skyline points are the points pi that V (pi )

intersect with the boundary of the convex hull of Q or are
inside the convex hull. However, none of the aforementioned
methods can address the spatial skyline query in parallel.
B2S2 requires a pre-structured R-tree and V S2 needs to build
a Voronoi diagram over input data points. Extending their
methods to a distributed and/or parallel environment is non-
trivial.

7.2 Parallel skyline solution

Due to high cost of skyline evaluation, a number of advanced
solutions have been proposed to evaluate the general skyline
queries in a distributed and/or parallel environment. Balke
et al. developed a parallel skyline solution over distributed
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environments [29]. Their method first vertically partitions
input datasets in such a manner that each partition keeps
object attributes in one dimension. Then, the skyline objects
are calculated in parallel and reported to a central point
for a final dominance check. Wu et al. designed a parallel
skyline method that leverages content-based data partition-
ing [30]. Their method can avoid unnecessary data access
and can progressively produce skylines by using recursive
region partitioning and dynamic region encoding mecha-
nisms. Moreover, the incremental scalability is also provided
in such a manner that workload can be automatically bal-
anced by distributing objects to new nodes. In addition to
random data partitioning methods that can generate similar
data distribution in each partition [31] and grid-based data
partitioning methods that consider object proximity [32,33],
Vlachou et al. proposed an angle-based data partitioning
method that partitions objects by their angular coordinates
[34]. The average pruning power of objects within a par-
tition can be increased and the number of skyline objects
in local skyline calculation can be minimized by applying
the angle-based partitioning method. Köhler et al. designed
a hyper-plane based data partitioning method in order to
minimize the local skylines in a partition and achieve effi-
cient local skyline merging [35]. Moreover, a variety of
MapReduce-based parallel solutions have been proposed for
skyline queries and other database applications. Han et al.
proposed an advanced skyline algorithm that utilizes Sky-
line with Sorted Positional index Lists (SSPL) to reduce I/O
cost [36]. Zhang et al. implemented BNL, SFS and Bitmap
algorithms using MapReduce framework [37]. Chen et al.
applied an angular data partition in their MapReduce-based
solution for skyline query evaluation [38]. Eldawy et al.
developed CG_Hadoop, a suite of MapReduce algorithms,
to solve fundamental computational geometry problems,
which include convex hull computation [24]. Mullesgaard
et al. investigated the general skyline queries by using the
MapReduce framework. Their method uses bit strings to
represent the dominance relation of attributes and generates
independent partition groups for calculating local skyline
objects in parallel [15]. Zhang et al. proposed an effi-
cient parallel skyline solution using MapReduce, in which
a Partial-presort Grid-based Partition Skyline (PGPS) algo-
rithm was developed to significantly improve the merging
skyline computation on large datasets [17]. More impor-
tantly, PGPS can be easily incorporated in the shuffle phase
of the MapReduce framework with minor overhead. How-
ever, our proposed solution targets on spatial skyline queries,
which are more challenging than the general skyline queries
as each dominance check requires computing dynamic dis-
tance attributes. None existing computation algorithms could
address the spatial skyline problems directly without extra
overhead. Existing partition schemes did not take advantage
of spatial properties thus could not fully accelerate spatial

skyline problems. Therefore, we propose a novel partition
method and a parallel algorithm which includes indepen-
dent regions to parallelize the spatial skyline computation
and pruning regions to reduce the cost of spatial dominance
test.

A Distributed Spatial Skyline (DSS) algorithm [39] was
proposed to collaboratively find the spatial skylines in wire-
less sensor networks. DSS parallelizes the search for skylines
by partitioning the search space based on Voronoi cells. A
geometry-based distributed spatial query strategy (GDSSky)
[40] was also developed to ensure the efficient use of sen-
sor energy. They use a regional partitioning strategy based
on the triangulation method to reduce the WSN energy con-
sumption. It also uses the Voronoi diagram method to divide
the spatial region. Their scope is to reduce energy rather to
support large-scale datasets, and generalizing Voronoi dia-
gram to large-scale datasets is problematic. In general, DSS
task is to find spatial skyline in wireless sensor networks that
contain hundreds of nodes, which is different from our scope.

7.3 GPU-based skyline solutions

There are several GPU-based skyline solutions observed in
literature. In theGNLalgorithm, everyobject is assignedwith
a global counter (initialized with 0) [12]. Then, GNL starts
a thread for every object: each thread compares the object
with all objects in the candidate window (the window size is
set to be half of input dataset size by default). If the object
is dominated by any other object, its global counter will be
increased by 1. After all dominance tests are completed, the
objects with global counter equal to 0 are skylines. GNL is
able to achieve high throughput since all dominance tests are
operated in parallel.

The GGS algorithm follows the idea of Sort-First Sky-
line method (SFS) [5] and sorts the data by Manhattan Norm
first [13]. Since objects cannot dominate any one that has
been scanned before, GGS progressively outputs skylines
and eliminates unqualified skyline candidates through itera-
tions. In each iteration, GGS creates a candidate buffer with
the first α objects and initiates threads to compare objects
with the ones in candidate buffer. After conducting domi-
nance tests, objects that are dominated are discarded, and
objects remaining in the candidate buffer are produced as
skylines. The process continues until all objects are com-
pared. Although the dominance tests inGNL andGGS can be
processed in parallel, the number of object comparisons may
become unacceptably large. The computational complexity
of both solutions may degrade to quadratic over large-scale
dataset.

A recursive point-based partitioningmethodwas proposed
for GPU-based parallel solutions in [6,14]. Initially, a pivot
point is selected, and the search space is partitioned to several
sub-spaces by the pivot point. Then, pivot points are recur-
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sively selected in every sub-space with all the pivot points
organized in a tree. In the process of pivot selection, every
object will be compared with pivot points encountered in the
path of traversing the tree top to down. If an object is not dom-
inated by any other object, it will be the next pivot point, then
added to the tree as a leaf node. The pivot selection can be
performed in parallel; however, the pivot tree construction
and updating become a bottleneck since the global tree is
shared by all the processes. Moreover, the pivot-based parti-
tioning method is sensitive to the pivot selection. The hybrid
multi-core algorithm is a point-based method that flattens
the tree to an array for faster memory accessing patterns, it
also processes data points within blocks of size α to improve
parallelization.

A parallel skyline algorithm SkyAlign [22], which uti-
lizes a global static partitioning scheme was proposed for
GPU computing scheme. To reduce the number of object
comparisons in tree traversals, data-ordering and conditional
branching, SkyAlign uses controlled branching to explore
transitive relationships and avoid object comparisons. Ini-
tially, a GPU-friendly partitioning scheme is applied; three
global virtual pivots are generated by the quartiles of the input
dataset. Two bitmasks of each object are calculated by the
relationship between the object and the virtual pivots. After
initialization, every object is set to one of the 4d partitions
(sub-spaces). Then, SkyAlign sorts objects by grid cells (or
partitions), and threads are mapped on the sorted layout. In
a d-dimensional space, SkyAlign needs d iterations during
which remaining objects are compared with all the points
using mask tests and dominance test if necessary. At the end
of each iteration, dominated objects are discarded and the
remaining objects are repacked for better locality.

Our proposed solution is different from point-based par-
titioning methods or SkyAlign. To maximize the parallelism
and minimize the cost of object comparisons, our method
applies an independent group-oriented partitioning scheme,
in which objects are grouped by independent groups. A
large number of object comparisons are avoided due to the
pre-filter process. The spatial dominance of objects in an
independent group does not rely on any objects outside that
independent group. All spatial dominance tests in indepen-
dent groups can be processed in parallel. There might be
objects in two or more independent groups because indepen-
dent groups may overlap. The duplicate skyline candidates
can be removed with minimal overhead in our method.

8 Conclusion

In this paper, we propose two advanced parallel spatial sky-
line solutions utilizing GPU and MapReduce framework,
separately. We demonstrate the efficiency and effectiveness

of the proposed solutions through extensive experiments on
different cardinality of real-world and synthetic datasets.

GPU multi-threading algorithm can solve spatial skyline
queries efficiently. However, as data grow rapidly, address-
ing skyline queries on large-scale datasets in a single-node
environment becomes impractical. Due to the memory lim-
itation of GPU hardware, we apply MapReduce scheme for
large-scale input datasets. The results show that MapReduce
scheme is able to solve large-scale input datasets efficiently.

In the future, we plan to extend our solution from two
perspectives. Firstly, we plan to extend the proposed parallel
solution to address spatial skyline queries on road networks.
Theoretically, the concepts of independent regions and prun-
ing regions can be applied in the space of road networks.
However, more investigation is needed to evaluate the cost
of calculating the independent regions and pruning regions.
Secondly, as the development of UAV drones continues,
spatial skyline queries in 3-d space become practical. We
also plan to implement and test our approach on higher-
dimensional space.
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